aboutsummaryrefslogtreecommitdiff
path: root/db/skiplist_test.cu
blob: 1827ab7ba5b0a8da6e20ffcffa8edbcb8d230d9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.


#include "db/skiplist.cuh"
//#include <atomic>
#include <set>

#include "leveldb/env.h"
#include "cassert"

#include "port/port.h"
#include "port/thread_annotations.h"
#include "util/arena.cuh"
#include "util/hash.h"
#include "util/random.cuh"
#include "util/testutil.h"

#include "util/cuda_gtest_plugin.h"

namespace leveldb {

typedef uint64_t Key;

struct Comparator {
  __device__ int operator()(const Key& a, const Key& b) const {
    if (a < b) {
      return -1;
    } else if (a > b) {
      return +1;
    } else {
      return 0;
    }
  }
};

/*TEST(SkipTest, Empty) {
  Arena arena;
  Comparator cmp;
  SkipList<Key, Comparator> list(cmp, &arena);
  ASSERT_TRUE(!list.Contains(10));

  SkipList<Key, Comparator>::Iterator iter(&list);
  ASSERT_TRUE(!iter.Valid());
  iter.SeekToFirst();
  ASSERT_TRUE(!iter.Valid());
  iter.Seek(100);
  ASSERT_TRUE(!iter.Valid());
  iter.SeekToLast();
  ASSERT_TRUE(!iter.Valid());
}

TEST(SkipTest, InsertAndLookup) {
}

// We want to make sure that with a single writer and multiple
// concurrent readers (with no synchronization other than when a
// reader's iterator is created), the reader always observes all the
// data that was present in the skip list when the iterator was
// constructed.  Because insertions are happening concurrently, we may
// also observe new values that were inserted since the iterator was
// constructed, but we should never miss any values that were present
// at iterator construction time.
//
// We generate multi-part keys:
//     <key,gen,hash>
// where:
//     key is in range [0..K-1]
//     gen is a generation number for key
//     hash is hash(key,gen)
//
// The insertion code picks a random key, sets gen to be 1 + the last
// generation number inserted for that key, and sets hash to Hash(key,gen).
//
// At the beginning of a read, we snapshot the last inserted
// generation number for each key.  We then iterate, including random
// calls to Next() and Seek().  For every key we encounter, we
// check that it is either expected given the initial snapshot or has
// been concurrently added since the iterator started.
class ConcurrentTest {
 private:
  static constexpr uint32_t K = 4;

  static uint64_t key(Key key) { return (key >> 40); }
  static uint64_t gen(Key key) { return (key >> 8) & 0xffffffffu; }
  static uint64_t hash(Key key) { return key & 0xff; }

  static uint64_t HashNumbers(uint64_t k, uint64_t g) {
    uint64_t data[2] = {k, g};
    return Hash(reinterpret_cast<char*>(data), sizeof(data), 0);
  }

  static Key MakeKey(uint64_t k, uint64_t g) {
    static_assert(sizeof(Key) == sizeof(uint64_t), "");
    assert(k <= K);  // We sometimes pass K to seek to the end of the skiplist
    assert(g <= 0xffffffffu);
    return ((k << 40) | (g << 8) | (HashNumbers(k, g) & 0xff));
  }

  static bool IsValidKey(Key k) {
    return hash(k) == (HashNumbers(key(k), gen(k)) & 0xff);
  }

  static Key RandomTarget(Random* rnd) {
    switch (rnd->Next() % 10) {
      case 0:
        // Seek to beginning
        return MakeKey(0, 0);
      case 1:
        // Seek to end
        return MakeKey(K, 0);
      default:
        // Seek to middle
        return MakeKey(rnd->Next() % K, 0);
    }
  }

  // Per-key generation
  struct State {
    std::atomic<int> generation[K];
    void Set(int k, int v) {
      generation[k].store(v, std::memory_order_release);
    }
    int Get(int k) { return generation[k].load(std::memory_order_acquire); }

    State() {
      for (int k = 0; k < K; k++) {
        Set(k, 0);
      }
    }
  };

  // Current state of the test
  State current_;

  Arena arena_;

  // SkipList is not protected by mu_.  We just use a single writer
  // thread to modify it.
  SkipList<Key, Comparator> list_;

 public:
  ConcurrentTest() : list_(Comparator(), &arena_) {}

  // REQUIRES: External synchronization
  void WriteStep(Random* rnd) {
    const uint32_t k = rnd->Next() % K;
    const intptr_t g = current_.Get(k) + 1;
    const Key key = MakeKey(k, g);
    list_.Insert(key);
    current_.Set(k, g);
  }

  void ReadStep(Random* rnd) {
    // Remember the initial committed state of the skiplist.
    State initial_state;
    for (int k = 0; k < K; k++) {
      initial_state.Set(k, current_.Get(k));
    }

    Key pos = RandomTarget(rnd);
    SkipList<Key, Comparator>::Iterator iter(&list_);
    iter.Seek(pos);
    while (true) {
      Key current;
      if (!iter.Valid()) {
        current = MakeKey(K, 0);
      } else {
        current = iter.key();
        ASSERT_TRUE(IsValidKey(current)) << current;
      }
      ASSERT_LE(pos, current) << "should not go backwards";

      // Verify that everything in [pos,current) was not present in
      // initial_state.
      while (pos < current) {
        ASSERT_LT(key(pos), K) << pos;

        // Note that generation 0 is never inserted, so it is ok if
        // <*,0,*> is missing.
        ASSERT_TRUE((gen(pos) == 0) ||
                    (gen(pos) > static_cast<Key>(initial_state.Get(key(pos)))))
            << "key: " << key(pos) << "; gen: " << gen(pos)
            << "; initgen: " << initial_state.Get(key(pos));

        // Advance to next key in the valid key space
        if (key(pos) < key(current)) {
          pos = MakeKey(key(pos) + 1, 0);
        } else {
          pos = MakeKey(key(pos), gen(pos) + 1);
        }
      }

      if (!iter.Valid()) {
        break;
      }

      if (rnd->Next() % 2) {
        iter.Next();
        pos = MakeKey(key(pos), gen(pos) + 1);
      } else {
        Key new_target = RandomTarget(rnd);
        if (new_target > pos) {
          pos = new_target;
          iter.Seek(new_target);
        }
      }
    }
  }
};*/


__device__ void update_list(SkipList<Key, Comparator> * l, Key key) {
  l->Insert(key);
}

__global__ void insert_skiplist(SkipList<Key, Comparator> * skipList, Random *device_rnd) {
  //unsigned row = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = 0; i < 1000; i++) {
    update_list(skipList, device_rnd->Next());
  }
}

struct Node {
  Key num;
  Node* next;

};

template<typename Key>
class MemorySet {
 public:
  explicit __device__ MemorySet(): first(nullptr), current(nullptr) {};

  __device__ ~MemorySet() {
    Node * crt = first, * prev;
    while (crt != nullptr) {
      prev = crt;
      crt = crt->next;
      delete prev;
    }
    first = nullptr;
  }

  __device__ bool insert(const Key & k) {
    if (first == nullptr) {
      first = new Node;
      first->num = k;
      first->next = nullptr;
      current = first;
      return true;
    }
    if (this->find(k)) {
      return false;
    }
    current->next = new Node;
    current = current->next;
    current->num = k;
    current->next = nullptr;
    return true;
  }

  __device__ bool find(const Key & value) {
    Node * crt = first;
    while (crt != nullptr) {
      if (crt->num == value) {
        return true;
      }
      crt = crt->next;
    }
    return false;
  }

  __device__ Node * get_first() {
    return this->first;
  }

  __device__ size_t count(const Key & k) {
    if (this->find(k)) {
      return 1;
    }
    return 0;
  }

 private:
  size_t total;
  Node * first;
  Node * current;
};

template<typename T, typename U>
__device__ void ASSERT_EQ_dev(T a, U b) {
  assert(a == b);
}

__global__ void insert_and_lookup(SkipList<Key, Comparator> * list) {

  printf("Lookup success\n");
  const int N = 2000;
  const int R = 5000;
  Random rnd(1000);

  MemorySet<Key> keys;
  //auto * arena = new Arena();
  //Comparator cmp;
  //SkipList<Key, Comparator> list(cmp, &*arena);
  for (int i = 0; i < N; i++) {
    Key key = rnd.Next() % R;
    if (keys.insert(key)) {
      list->Insert(key);
    }
  }

  for (int i = 0; i < R; i++) {
    if (list->Contains(i)) {
      ASSERT_EQ_dev(keys.count(i), 1);
    } else {
      ASSERT_EQ_dev(keys.count(i), 0);
    }
  }

  Node * cur = keys.get_first();
  while (cur != nullptr) {
    assert(list->Contains(cur->num));
    cur = cur->next;
  }
  printf("Lookup success\n");
/*

  // Forward iteration test
  for (int i = 0; i < R; i++) {
    SkipList<Key, Comparator>::Iterator iter(&list);
    iter.Seek(i);

    // Compare against model iterator
    std::set<Key>::iterator model_iter = keys.lower_bound(i);
    for (int j = 0; j < 3; j++) {
      if (model_iter == keys.end()) {
        ASSERT_TRUE(!iter.Valid());
        break;
      } else {
        ASSERT_TRUE(iter.Valid());
        ASSERT_EQ(*model_iter, iter.key());
        ++model_iter;
        iter.Next();
      }
    }
  }

  // Backward iteration test
  {
    SkipList<Key, Comparator>::Iterator iter(&list);
    iter.SeekToLast();

    // Compare against model iterator
    for (std::set<Key>::reverse_iterator model_iter = keys.rbegin();
         model_iter != keys.rend(); ++model_iter) {
      ASSERT_TRUE(iter.Valid());
      ASSERT_EQ(*model_iter, iter.key());
      iter.Prev();
    }
    ASSERT_TRUE(!iter.Valid());
  }
*/

}


__device__ void new_cuda_atomic() {
}

class TestClass {
 public:
  explicit __device__ TestClass(): atomic(0), alloc_ptr_(nullptr), alloc_bytes_remaining_(0),
  head_(nullptr), blocks_(nullptr) {

  }

  TestClass(const TestClass&) = delete;
  TestClass& operator=(const TestClass&) = delete;

    char* alloc_ptr_;
    size_t alloc_bytes_remaining_;

    // Array of new[] allocated memory blocks
    //thrust::host_vector<char *> blocks_;
    //std::vector<char*> blocks_;

    void * head_;
    void * blocks_;

  cuda::atomic<size_t> atomic;
};

__global__ void init(Arena ** pArena, SkipList<Key, Comparator> ** pSkipList) {
  Comparator cmp;
  printf("init\n");
  *pArena = new Arena();
  //new TestClass();
  printf("init arena\n");
  // new = SkipList *
  *pSkipList = new SkipList<Key, Comparator>(cmp, *pArena);
  printf("init2\n");
  //pSkipList->Insert(16807);
  printf("skiplist: %p\n", *pSkipList);
  printf("init3\n");
}

constexpr size_t SKIPLIST_TEST_SIZE = 100;
constexpr size_t TEST_STEP = SKIPLIST_TEST_SIZE / 10;

__global__ void testParallel(SkipList<Key, Comparator> * skipList, Key * keys) {
  unsigned int start = threadIdx.x;
  printf("start: %u\n", start);
  for (unsigned i = start * TEST_STEP; i < (start + 1) * TEST_STEP; i++) {
    //printf("key: %lu\n", keys[i]);
    skipList->Insert(keys[i]);
  }
  printf("done: %u\n", start);
}


void host_insert_test() {
  //Key * keys;
  //SkipList<Key, Comparator> list(cmp, &arena);
  /*
  for (int i = 0; i < 1000; i++) {
    keys[i] = .Next();
  }*/
  Key * keys = new Key[SKIPLIST_TEST_SIZE];
  Arena ** pArena;
  SkipList<Key, Comparator> ** skipList;
  std::set<Key> k;

  cudaMallocManaged((void**)&pArena, sizeof(void*));
  cudaMallocManaged((void**)&skipList, sizeof(void*));
  auto * device_rnd = new Random(test::RandomSeed());
  Key * device_keys = nullptr;
  cudaMallocManaged((void**)&device_keys, sizeof(Key) * SKIPLIST_TEST_SIZE );

  for (int i = 0; i < SKIPLIST_TEST_SIZE; i++) {
    Key tmp;
    size_t current = k.size();
    do {
      tmp = device_rnd->Next();
      k.insert(tmp);
    } while (k.size() == current);

    /*do {
      tmp = device_rnd->Next();
    }
    while (k.find(tmp) != k.end());*/

    keys[i] = tmp;
    //printf("%ld\n", tmp);
  }

  cudaMemcpy(device_keys, keys, SKIPLIST_TEST_SIZE * sizeof(Key), cudaMemcpyHostToDevice);

  dim3 gridSize(1, 1);
  dim3 blockSize(10, 1);

  init<<<1, 1>>>(pArena, skipList);
  //sleep(5);
  cudaDeviceSynchronize();
  //insert_skiplist<<<gridSize, blockSize>>>(skipList, device_rnd);

  testParallel<<<gridSize, blockSize>>>(*skipList, device_keys);
  //cudaDeviceSynchronize();

  //insert_and_lookup<<<gridSize, blockSize>>>(skipList);
  cudaDeviceSynchronize();
  cudaFree(device_keys);
  cudaFree(skipList);
  cudaFree(pArena);
}


TEST(SkipTest, TestCudaInsert) {
  host_insert_test();
}

__global__ void test_empty() {
  Arena arena;
  Comparator cmp;
  SkipList<Key, Comparator> list(cmp, &arena);
  assert(!list.Contains(10));
  SkipList<Key, Comparator>::Iterator iter(&list);
  assert(!iter.Valid());
  iter.SeekToFirst();
  assert(!iter.Valid());
  iter.Seek(100);
  assert(!iter.Valid());
  iter.SeekToLast();
  assert(!iter.Valid());
}

__global__ void test_fail() {
  std::printf("show some message");
  assert(0);
}


/*
// Needed when building in C++11 mode.
constexpr uint32_t ConcurrentTest::K;

// Simple test that does single-threaded testing of the ConcurrentTest
// scaffolding.
TEST(SkipTest, ConcurrentWithoutThreads) {
  ConcurrentTest test;
  Random rnd(test::RandomSeed());
  for (int i = 0; i < 10000; i++) {
    test.ReadStep(&rnd);
    test.WriteStep(&rnd);
  }
}

class TestState {
 public:
  ConcurrentTest t_;
  int seed_;
  std::atomic<bool> quit_flag_;

  enum ReaderState { STARTING, RUNNING, DONE };

  explicit TestState(int s)
      : seed_(s), quit_flag_(false), state_(STARTING), state_cv_(&mu_) {}

  void Wait(ReaderState s) LOCKS_EXCLUDED(mu_) {
    mu_.Lock();
    while (state_ != s) {
      state_cv_.Wait();
    }
    mu_.Unlock();
  }

  void Change(ReaderState s) LOCKS_EXCLUDED(mu_) {
    mu_.Lock();
    state_ = s;
    state_cv_.Signal();
    mu_.Unlock();
  }

 private:
  port::Mutex mu_;
  ReaderState state_ GUARDED_BY(mu_);
  port::CondVar state_cv_ GUARDED_BY(mu_);
};

static void ConcurrentReader(void* arg) {
  TestState* state = reinterpret_cast<TestState*>(arg);
  Random rnd(state->seed_);
  int64_t reads = 0;
  state->Change(TestState::RUNNING);
  while (!state->quit_flag_.load(std::memory_order_acquire)) {
    state->t_.ReadStep(&rnd);
    ++reads;
  }
  state->Change(TestState::DONE);
}

static void RunConcurrent(int run) {
  const int seed = test::RandomSeed() + (run * 100);
  Random rnd(seed);
  const int N = 1000;
  const int kSize = 1000;
  for (int i = 0; i < N; i++) {
    if ((i % 100) == 0) {
      std::fprintf(stderr, "Run %d of %d\n", i, N);
    }
    TestState state(seed + 1);
    Env::Default()->Schedule(ConcurrentReader, &state);
    state.Wait(TestState::RUNNING);
    for (int i = 0; i < kSize; i++) {
      state.t_.WriteStep(&rnd);
    }
    state.quit_flag_.store(true, std::memory_order_release);
    state.Wait(TestState::DONE);
  }
}

TEST(SkipTest, Concurrent1) { RunConcurrent(1); }
TEST(SkipTest, Concurrent2) { RunConcurrent(2); }
TEST(SkipTest, Concurrent3) { RunConcurrent(3); }
TEST(SkipTest, Concurrent4) { RunConcurrent(4); }
TEST(SkipTest, Concurrent5) { RunConcurrent(5); }
*/

}  // namespace leveldb

int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  int i = RUN_ALL_TESTS();
  sleep(1);
  return i;
}